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INTRODUCTION 

The pairwise comparisons (PC or PCs) method 
has been in use since the 13th century when Llull 
documented it in [1]. The PC method is based on 
an old adage: When eating an elephant, take one 
bite at a time. This expresses a sensible approach 
to a challenging task by attacking it entity by en-
tity. Entities could be objects or abstract concepts. 
Assigning weights to a sizable number of entities 
is more challenging than comparing two entities at 
a time. The intuitive assumption that the pairwise 
comparisons method is somehow superior to the 
direct assignment of weights was supported by the 
first Monte Carlo study conducted in 1996 in [2]. 
Random horizontal bars were displayed for users 
to assess their lengths in a direct way and by pair-
wise comparisons. In the direct way, a unit (called 

a brick) was used to estimate the length. Using any 
other unit, such as one centimeter or inch, was at 
that time infeasible since the character (not pixel) 
graphic mode was the only one available to the au-
thor. The results are compiled in Table 1.

Assessment of intangible entities (e.g., soft-
ware reliability or software safety) involves not 
only imprecise or inexact knowledge but also in-
consistency in our assessments. It is a natural ap-
proach for processing subjectivity, although ob-
jective entities can also be processed in this way. 

Intuitively, it is obvious that the “two at a time 
approach” is better than the “everything at once” 
method for any set of comparisons. However, to 
show that the pairwise comparisons method is su-
perior to the “by an expert’s eye” common sense 
approach is not entirely a trivial task since there are 
many hurdles to overcome. One of the problems is 
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the generation of random objects. The main goal of 
the presented experiment is to compare the accura-
cy of area assessments based on the pairwise com-
parisons method with the direct method, which is 
also referred to as “by eye estimation”.

THE METHOD OF PAIRWISE 
COMPARISONS 

In the pairwise comparisons (PC) method, 
entities (physical objects or abstract concepts) 
are presented in pairs to one or more human ex-
perts. At the current stage of pairwise compari-
sons theory, there is no possibility of proving, or 
disproving, by analytical means which method is 
superior. This is why we need to conduct Monte 
Carlo studies (e.g., [3] and [4]). Stanislaw Ulam 
introduced the Monte Carlo method when work-
ing on the Manhattan Project. In mathematical 
terms, an n × n real matrix A = [aij] is a pairwise 
comparisons (PC) matrix if aij > 0 and aij = 1/aji for 
all i,j = 1,…,n. Elements aij represent the result of 
ratios which are (often subjective) comparisons 
of the ith entity with the jth one. A PC matrix A 
is consistent if aij · ajk = aik for all i,j,k = 1,...,n. 
It is easy to see that a PC matrix A is consistent 
if and only if there exists a positive n-vector w 
such that aij = wi/wj, i,j = 1,…,n. For a consistent 
PC matrix A, the values wi serve as priorities or 
implicit weights of the importance of alternatives. 
More details about the problem of inconsistent 
assessments and definitions of inconsistency can 
be found, e.g., in [5, 6, 7].

CHALLENGES OF RANDOM OBJECT 
GENERATION FOR A MONTE CARLO 
STUDY

A rather straightforward 1D case (random-
ly generated bars) for testing the accuracy of 

pairwise comparisons was published in [2]. The 
random bar length estimation error went down 
from approximately 15% (by the direct method) 
to approximately 5% by the pairwise compari-
sons method. Evidently, it was not easy to find a 
solution to a 2D case since semi-random objects 
needed to be generated. This was presented in [9].

For the 2D Monte Carlo experimentation, we 
needed random objects. However, these random 
objects cannot be too complicated for their area 
estimation. For example, the area estimation for 
an image of a porcupine and sun with many rays 
are not easy and must be excluded as not easy to 
assess. On the other hand, random objects can-
not be trivial to estimate. For example, the size of 
randomly generated rectangles or circles may be 
easy to assess for some tested subjects.

HEURISTIC FOR SEMI-RANDOM OBJECT 
GENERATION

Several heuristics were presented in [10] for 
the random generation of polygons and imple-
mented as the RPG (random polygon generator) 
software package. Although it is possible to gen-
erate random objects, they may not be acceptable 
for area or volume assessments.

1D case

Table 1 shows results for the 1D case present-
ed in [2]. Horizontal bars of random lengths were 
displayed on the computer monitor for assess-
ment by subjects (undergraduate students). Each 
student assessed a different set of random bars.

2D case

2D shapes in [9] were generated by a heuris-
tic method summarized in Table 2. The Gaussian 

Table 1. Printed objects and their volumes
Number of bars 3 4 5 6

Number of observations 139 138 129 127

Mean error
PC DR PC DR PC DR PC DR

4.150 11.583 4.092 13.166 3.92 15.219 3.763 16.582

Standard deviation 2.866 6.195 2.671 7.572 2.507 7.918 2.458 8.905

K-S value 1.185 1.412 1.412 1.419 1.560 1.587 1.584 1.760

Critical value for α = 0.05 0.115 0.116 0.120 0.121
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blur is obtained by applying function given by 
Equation 1:

	

1 

 𝑔𝑔(𝑥𝑥, 𝑦𝑦)  =  1
2𝜋𝜋𝜎𝜎2 𝑒𝑒−𝑥𝑥2+ 𝑦𝑦2

2𝜎𝜎2  (1) 
 

 𝑀𝑀𝑖𝑖 (∏ 𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1 )

1
𝑛𝑛  (2) 

 

 𝑀𝑀𝑖𝑖 (∏ 𝑑𝑑𝑖𝑖/𝑑𝑑𝑗𝑗
𝑛𝑛
𝑗𝑗=1 )

1
𝑛𝑛  (3) 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑀𝑀𝑖𝑖/∑𝑀𝑀𝑖𝑖  (4) 

or equivalently: 

𝑀𝑀𝑤𝑤𝑖𝑖 = ( 𝑑𝑑𝑖𝑖
5

𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5
)

1
5 /∑ ( 𝑑𝑑𝑖𝑖

5

𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5
)

1
5
, 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖

(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5 / ∑ 𝑑𝑑𝑖𝑖
(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5, 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖

(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5 ⋅ (𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5

∑ 𝑑𝑑𝑖𝑖
= 𝑑𝑑𝑖𝑖/∑𝑑𝑑𝑖𝑖, 

 
𝛿𝛿 = (∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛

𝑖𝑖=1
2)

1/2
(5) 

 
 𝜎𝜎

√𝑛𝑛 𝜇𝜇−1 (6) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(Θ̂1, … , Θ̂𝑑𝑑, … , Θ̂𝐷𝐷) = 
 

(𝑛𝑛 × 𝐷𝐷)−1 ∑ ∑(Θ̂𝑑𝑑
𝑖𝑖 − Θ𝑑𝑑)2

𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1
= 

=  (𝑛𝑛 × 𝐷𝐷)−1 ∑ ∑(𝑢𝑢𝑑𝑑
𝑖𝑖 )2

𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1
 

 
(7) 
 
 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸𝑝𝑝(Θ̂1, … , Θ̂d, … , Θ̂D) = 𝑞𝑞𝑝𝑝(|𝑢𝑢1

1|, … , |𝑢𝑢𝑑𝑑
𝑖𝑖 |, … , |𝑢𝑢𝐷𝐷

𝑖𝑖 |). (8) 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0244 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.9(Θ̂1, … , Θ̂5) = 0.0774 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0313 
 
 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.9(Θ̂1, … , Θ̂5) = 0.0898 
 

𝑟𝑟𝑑𝑑
𝑖𝑖 = Θ̂𝑑𝑑

𝑖𝑖 − Θ𝑑𝑑
Θ𝑑𝑑

 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑝𝑝(Θ̂1, … , Θ̂d, … , Θ̂D) = 𝑞𝑞𝑝𝑝(|𝑟𝑟1

1|, … , |𝑟𝑟𝑑𝑑
𝑖𝑖 |, … , |𝑟𝑟𝐷𝐷

𝑖𝑖 |). (8) 
1.  

	 (1)

where:	x is the distance from the origin in the hori-
zontal axis, y is the distance from the origin 
in the vertical axis, and σ is the standard 
deviation of the Gaussian distribution.

3D OBJECTS

Nature creates random 3D objects such as 
river stones, fruits, and vegetables. They have 

been scanned with a 3D scanner. We used the 
3D printing process using a MakerBot’s printer 
The Replicator (Dual) and Makerware software. 
We utilized open-source FreeCAD (https://www.
freecad.org/) to create and enlarge various 3D ob-
jects. The volumes of these objects (in cubic cen-
timeters (cm3)) are presented in Table 3. Figure 1 
shows 3D objects used in this study.

DATA COLLECTION AND RESULTS 

We evaluated and compared the perfor-
mance of the pairwise comparisons method for 
random 3D objects using a Monte Carlo simu-
lation approach. Our selection criteria required 
participants to have a basic understanding of 
3D objects, though not necessarily as experts, 
to ensure a broad and unbiased understanding. 
We recruited 33 undergraduate and graduate stu-
dents from local educational institutions – this is 
expanded below in the text. Hence, the consid-
ered method will be presented based on a non-
probability sample, which is a widely used ap-
proach with strong theoretical foundations (e.g., 
[11] and [12]).

Each participant completed comparisons (for 
instance, S1:S2, S4:S5, etc.), where they com-
pared two random 3D objects side-by-side, as-
sessing them based on volume. Figure 2 displays 
the six 3D-printed objects that are uniquely la-
belled with red numbers from 0 to 5. Object 0, 
a small, textured cube, serves as a reference for 
the respondents. Objects 1 through 5 correspond 

Table 2. 2D random shape generation by a heuristic
Step 1 Generate N random points

Step 2 Join points by thick black lines to form a closed 
curve

Step 3 Apply Gaussian blur with a very large radius

Step 4 Set a high threshold value λ to separate white 
and black

Table 3. Printed objects and their volumes
Shape ID Name Volume (cm3)

S0 Cube 1.00

S1 stone_2 30.702

S2 Tomato 51.801

S3 Paprika 12.933

S4 stone_1 16.383

S5 stone_3 11.481

Figure 1. Six 3D objects corresponding to our study
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to objects S1 through S5 and exhibit a variety of 
geometries. All objects are black with white dots, 
which aid in analyzing their volume or surface 
area for the study or experiment.

Before the data collection, we briefed par-
ticipants on the study’s purpose without influenc-
ing their decisions and obtained their consent to 
ensure they understood the study’s purpose and 
how their data would be used. We provided clear 
instructions on how to interact with the 3D ob-
jects, the basis for their decisions, and how to re-
cord their confidence levels. The data collection 
process, designed to be efficient and yield mean-
ingful results, took approximately 2 weeks. We 
used a form (see Fig. 3) to collect data. For ev-
ery response on a prepared form (see Fig. 3), the 
vector of the direct estimations (with 1 cm3) was 

normalized to the sum of 1 and compared with 
the vector of geometric means (also normalized 
the same way) of the PC matrix constructed from 
the pairwise comparisons. Students (subjects by 
statistical terminology) have estimated volumes 
of five randomly generated 3D objects in the sec-
ond part of our Monte Carlo experiment. In the 
first part, the same random five objects have been 
compared in pairs.

Let us denote the vector of the direct estima-
tions by D = [di], i = 1,2,…,5. Next we denote a 
normalized (to the sum of 1) vector of the direct 
estimations w = [wi], where wi = [di/Σdi], and de-
note the PC matrix Cij = [di/dj].

The geometric mean of a row is:

	

1 

 𝑔𝑔(𝑥𝑥, 𝑦𝑦)  =  1
2𝜋𝜋𝜎𝜎2 𝑒𝑒−𝑥𝑥2+ 𝑦𝑦2

2𝜎𝜎2  (1) 
 

 𝑀𝑀𝑖𝑖 (∏ 𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1 )

1
𝑛𝑛  (2) 

 

 𝑀𝑀𝑖𝑖 (∏ 𝑑𝑑𝑖𝑖/𝑑𝑑𝑗𝑗
𝑛𝑛
𝑗𝑗=1 )

1
𝑛𝑛  (3) 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑀𝑀𝑖𝑖/∑𝑀𝑀𝑖𝑖  (4) 

or equivalently: 

𝑀𝑀𝑤𝑤𝑖𝑖 = ( 𝑑𝑑𝑖𝑖
5

𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5
)

1
5 /∑ ( 𝑑𝑑𝑖𝑖

5

𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5
)

1
5
, 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖

(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5 / ∑ 𝑑𝑑𝑖𝑖
(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5, 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖

(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5 ⋅ (𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5

∑ 𝑑𝑑𝑖𝑖
= 𝑑𝑑𝑖𝑖/∑𝑑𝑑𝑖𝑖, 

 
𝛿𝛿 = (∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛

𝑖𝑖=1
2)

1/2
(5) 

 
 𝜎𝜎

√𝑛𝑛 𝜇𝜇−1 (6) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(Θ̂1, … , Θ̂𝑑𝑑, … , Θ̂𝐷𝐷) = 
 

(𝑛𝑛 × 𝐷𝐷)−1 ∑ ∑(Θ̂𝑑𝑑
𝑖𝑖 − Θ𝑑𝑑)2

𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1
= 

=  (𝑛𝑛 × 𝐷𝐷)−1 ∑ ∑(𝑢𝑢𝑑𝑑
𝑖𝑖 )2

𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1
 

 
(7) 
 
 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸𝑝𝑝(Θ̂1, … , Θ̂d, … , Θ̂D) = 𝑞𝑞𝑝𝑝(|𝑢𝑢1

1|, … , |𝑢𝑢𝑑𝑑
𝑖𝑖 |, … , |𝑢𝑢𝐷𝐷

𝑖𝑖 |). (8) 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0244 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.9(Θ̂1, … , Θ̂5) = 0.0774 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0313 
 
 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.9(Θ̂1, … , Θ̂5) = 0.0898 
 

𝑟𝑟𝑑𝑑
𝑖𝑖 = Θ̂𝑑𝑑

𝑖𝑖 − Θ𝑑𝑑
Θ𝑑𝑑

 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑝𝑝(Θ̂1, … , Θ̂d, … , Θ̂D) = 𝑞𝑞𝑝𝑝(|𝑟𝑟1

1|, … , |𝑟𝑟𝑑𝑑
𝑖𝑖 |, … , |𝑟𝑟𝐷𝐷

𝑖𝑖 |). (8) 
1.  

	 (2)

Figure 3. Data collection form

Figure 2. Labeled 3D printed objects
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where:	n is the PC matrix size and i = 1,2,…,5 
denotes the chosen row. 

The geometric mean vector is: Mv = [Mi]. Then, 
we can rewrite the geometric mean of a row as:

	

1 

 𝑔𝑔(𝑥𝑥, 𝑦𝑦)  =  1
2𝜋𝜋𝜎𝜎2 𝑒𝑒−𝑥𝑥2+ 𝑦𝑦2

2𝜎𝜎2  (1) 
 

 𝑀𝑀𝑖𝑖 (∏ 𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1 )

1
𝑛𝑛  (2) 

 

 𝑀𝑀𝑖𝑖 (∏ 𝑑𝑑𝑖𝑖/𝑑𝑑𝑗𝑗
𝑛𝑛
𝑗𝑗=1 )

1
𝑛𝑛  (3) 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑀𝑀𝑖𝑖/∑𝑀𝑀𝑖𝑖  (4) 

or equivalently: 

𝑀𝑀𝑤𝑤𝑖𝑖 = ( 𝑑𝑑𝑖𝑖
5

𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5
)

1
5 /∑ ( 𝑑𝑑𝑖𝑖

5

𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5
)

1
5
, 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖

(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5 / ∑ 𝑑𝑑𝑖𝑖
(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5, 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖

(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5 ⋅ (𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5

∑ 𝑑𝑑𝑖𝑖
= 𝑑𝑑𝑖𝑖/∑𝑑𝑑𝑖𝑖, 

 
𝛿𝛿 = (∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛

𝑖𝑖=1
2)

1/2
(5) 

 
 𝜎𝜎

√𝑛𝑛 𝜇𝜇−1 (6) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(Θ̂1, … , Θ̂𝑑𝑑, … , Θ̂𝐷𝐷) = 
 

(𝑛𝑛 × 𝐷𝐷)−1 ∑ ∑(Θ̂𝑑𝑑
𝑖𝑖 − Θ𝑑𝑑)2

𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1
= 

=  (𝑛𝑛 × 𝐷𝐷)−1 ∑ ∑(𝑢𝑢𝑑𝑑
𝑖𝑖 )2

𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1
 

 
(7) 
 
 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸𝑝𝑝(Θ̂1, … , Θ̂d, … , Θ̂D) = 𝑞𝑞𝑝𝑝(|𝑢𝑢1

1|, … , |𝑢𝑢𝑑𝑑
𝑖𝑖 |, … , |𝑢𝑢𝐷𝐷

𝑖𝑖 |). (8) 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0244 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.9(Θ̂1, … , Θ̂5) = 0.0774 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0313 
 
 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.9(Θ̂1, … , Θ̂5) = 0.0898 
 

𝑟𝑟𝑑𝑑
𝑖𝑖 = Θ̂𝑑𝑑

𝑖𝑖 − Θ𝑑𝑑
Θ𝑑𝑑

 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑝𝑝(Θ̂1, … , Θ̂d, … , Θ̂D) = 𝑞𝑞𝑝𝑝(|𝑟𝑟1

1|, … , |𝑟𝑟𝑑𝑑
𝑖𝑖 |, … , |𝑟𝑟𝐷𝐷

𝑖𝑖 |). (8) 
1.  

	 (3)

If we normalize the geometric means of each 
row, we obtain: 

	

1 

 𝑔𝑔(𝑥𝑥, 𝑦𝑦)  =  1
2𝜋𝜋𝜎𝜎2 𝑒𝑒−𝑥𝑥2+ 𝑦𝑦2

2𝜎𝜎2  (1) 
 

 𝑀𝑀𝑖𝑖 (∏ 𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1 )

1
𝑛𝑛  (2) 

 

 𝑀𝑀𝑖𝑖 (∏ 𝑑𝑑𝑖𝑖/𝑑𝑑𝑗𝑗
𝑛𝑛
𝑗𝑗=1 )

1
𝑛𝑛  (3) 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑀𝑀𝑖𝑖/∑𝑀𝑀𝑖𝑖  (4) 

or equivalently: 

𝑀𝑀𝑤𝑤𝑖𝑖 = ( 𝑑𝑑𝑖𝑖
5

𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5
)

1
5 /∑ ( 𝑑𝑑𝑖𝑖

5

𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5
)

1
5
, 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖

(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5 / ∑ 𝑑𝑑𝑖𝑖
(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5, 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖

(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5 ⋅ (𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5

∑ 𝑑𝑑𝑖𝑖
= 𝑑𝑑𝑖𝑖/∑𝑑𝑑𝑖𝑖, 

 
𝛿𝛿 = (∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛

𝑖𝑖=1
2)

1/2
(5) 

 
 𝜎𝜎

√𝑛𝑛 𝜇𝜇−1 (6) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(Θ̂1, … , Θ̂𝑑𝑑, … , Θ̂𝐷𝐷) = 
 

(𝑛𝑛 × 𝐷𝐷)−1 ∑ ∑(Θ̂𝑑𝑑
𝑖𝑖 − Θ𝑑𝑑)2

𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1
= 

=  (𝑛𝑛 × 𝐷𝐷)−1 ∑ ∑(𝑢𝑢𝑑𝑑
𝑖𝑖 )2

𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1
 

 
(7) 
 
 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸𝑝𝑝(Θ̂1, … , Θ̂d, … , Θ̂D) = 𝑞𝑞𝑝𝑝(|𝑢𝑢1

1|, … , |𝑢𝑢𝑑𝑑
𝑖𝑖 |, … , |𝑢𝑢𝐷𝐷

𝑖𝑖 |). (8) 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0244 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.9(Θ̂1, … , Θ̂5) = 0.0774 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0313 
 
 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.9(Θ̂1, … , Θ̂5) = 0.0898 
 

𝑟𝑟𝑑𝑑
𝑖𝑖 = Θ̂𝑑𝑑

𝑖𝑖 − Θ𝑑𝑑
Θ𝑑𝑑

 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑝𝑝(Θ̂1, … , Θ̂d, … , Θ̂D) = 𝑞𝑞𝑝𝑝(|𝑟𝑟1

1|, … , |𝑟𝑟𝑑𝑑
𝑖𝑖 |, … , |𝑟𝑟𝐷𝐷

𝑖𝑖 |). (8) 
1.  

	 (4)

or equivalently:

	

1 

 𝑔𝑔(𝑥𝑥, 𝑦𝑦)  =  1
2𝜋𝜋𝜎𝜎2 𝑒𝑒−𝑥𝑥2+ 𝑦𝑦2

2𝜎𝜎2  (1) 
 

 𝑀𝑀𝑖𝑖 (∏ 𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1 )

1
𝑛𝑛  (2) 

 

 𝑀𝑀𝑖𝑖 (∏ 𝑑𝑑𝑖𝑖/𝑑𝑑𝑗𝑗
𝑛𝑛
𝑗𝑗=1 )

1
𝑛𝑛  (3) 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑀𝑀𝑖𝑖/∑𝑀𝑀𝑖𝑖  (4) 

or equivalently: 

𝑀𝑀𝑤𝑤𝑖𝑖 = ( 𝑑𝑑𝑖𝑖
5

𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5
)

1
5 /∑ ( 𝑑𝑑𝑖𝑖

5

𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5
)

1
5
, 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖

(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5 / ∑ 𝑑𝑑𝑖𝑖
(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5, 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖

(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5 ⋅ (𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5

∑ 𝑑𝑑𝑖𝑖
= 𝑑𝑑𝑖𝑖/∑𝑑𝑑𝑖𝑖, 

 
𝛿𝛿 = (∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛

𝑖𝑖=1
2)

1/2
(5) 

 
 𝜎𝜎

√𝑛𝑛 𝜇𝜇−1 (6) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(Θ̂1, … , Θ̂𝑑𝑑, … , Θ̂𝐷𝐷) = 
 

(𝑛𝑛 × 𝐷𝐷)−1 ∑ ∑(Θ̂𝑑𝑑
𝑖𝑖 − Θ𝑑𝑑)2

𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1
= 

=  (𝑛𝑛 × 𝐷𝐷)−1 ∑ ∑(𝑢𝑢𝑑𝑑
𝑖𝑖 )2

𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1
 

 
(7) 
 
 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸𝑝𝑝(Θ̂1, … , Θ̂d, … , Θ̂D) = 𝑞𝑞𝑝𝑝(|𝑢𝑢1

1|, … , |𝑢𝑢𝑑𝑑
𝑖𝑖 |, … , |𝑢𝑢𝐷𝐷

𝑖𝑖 |). (8) 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0244 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.9(Θ̂1, … , Θ̂5) = 0.0774 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0313 
 
 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.9(Θ̂1, … , Θ̂5) = 0.0898 
 

𝑟𝑟𝑑𝑑
𝑖𝑖 = Θ̂𝑑𝑑

𝑖𝑖 − Θ𝑑𝑑
Θ𝑑𝑑

 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑝𝑝(Θ̂1, … , Θ̂d, … , Θ̂D) = 𝑞𝑞𝑝𝑝(|𝑟𝑟1

1|, … , |𝑟𝑟𝑑𝑑
𝑖𝑖 |, … , |𝑟𝑟𝐷𝐷

𝑖𝑖 |). (8) 
1.  

,	

then:

	

1 

 𝑔𝑔(𝑥𝑥, 𝑦𝑦)  =  1
2𝜋𝜋𝜎𝜎2 𝑒𝑒−𝑥𝑥2+ 𝑦𝑦2

2𝜎𝜎2  (1) 
 

 𝑀𝑀𝑖𝑖 (∏ 𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1 )

1
𝑛𝑛  (2) 

 

 𝑀𝑀𝑖𝑖 (∏ 𝑑𝑑𝑖𝑖/𝑑𝑑𝑗𝑗
𝑛𝑛
𝑗𝑗=1 )

1
𝑛𝑛  (3) 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑀𝑀𝑖𝑖/∑𝑀𝑀𝑖𝑖  (4) 

or equivalently: 

𝑀𝑀𝑤𝑤𝑖𝑖 = ( 𝑑𝑑𝑖𝑖
5

𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5
)

1
5 /∑ ( 𝑑𝑑𝑖𝑖

5

𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5
)

1
5
, 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖

(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5 / ∑ 𝑑𝑑𝑖𝑖
(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5, 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖

(𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5 ⋅ (𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5)1/5

∑ 𝑑𝑑𝑖𝑖
= 𝑑𝑑𝑖𝑖/∑𝑑𝑑𝑖𝑖, 

 
𝛿𝛿 = (∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛

𝑖𝑖=1
2)

1/2
(5) 

 
 𝜎𝜎

√𝑛𝑛 𝜇𝜇−1 (6) 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(Θ̂1, … , Θ̂𝑑𝑑, … , Θ̂𝐷𝐷) = 
 

(𝑛𝑛 × 𝐷𝐷)−1 ∑ ∑(Θ̂𝑑𝑑
𝑖𝑖 − Θ𝑑𝑑)2

𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1
= 

=  (𝑛𝑛 × 𝐷𝐷)−1 ∑ ∑(𝑢𝑢𝑑𝑑
𝑖𝑖 )2

𝑛𝑛

𝑖𝑖=1

𝐷𝐷

𝑑𝑑=1
 

 
(7) 
 
 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸𝑝𝑝(Θ̂1, … , Θ̂d, … , Θ̂D) = 𝑞𝑞𝑝𝑝(|𝑢𝑢1

1|, … , |𝑢𝑢𝑑𝑑
𝑖𝑖 |, … , |𝑢𝑢𝐷𝐷

𝑖𝑖 |). (8) 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0244 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.9(Θ̂1, … , Θ̂5) = 0.0774 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0313 
 
 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.9(Θ̂1, … , Θ̂5) = 0.0898 
 

𝑟𝑟𝑑𝑑
𝑖𝑖 = Θ̂𝑑𝑑

𝑖𝑖 − Θ𝑑𝑑
Θ𝑑𝑑

 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑝𝑝(Θ̂1, … , Θ̂d, … , Θ̂D) = 𝑞𝑞𝑝𝑝(|𝑟𝑟1

1|, … , |𝑟𝑟𝑑𝑑
𝑖𝑖 |, … , |𝑟𝑟𝐷𝐷

𝑖𝑖 |). (8) 
1.  

	
or:

	

1 

 𝑔𝑔(𝑥𝑥, 𝑦𝑦)  =  1
2𝜋𝜋𝜎𝜎2 𝑒𝑒−𝑥𝑥2+ 𝑦𝑦2

2𝜎𝜎2  (1) 
 

 𝑀𝑀𝑖𝑖 (∏ 𝐶𝐶𝑖𝑖𝑖𝑖
𝑛𝑛
𝑗𝑗=1 )

1
𝑛𝑛  (2) 

 

 𝑀𝑀𝑖𝑖 (∏ 𝑑𝑑𝑖𝑖/𝑑𝑑𝑗𝑗
𝑛𝑛
𝑗𝑗=1 )

1
𝑛𝑛  (3) 

 
𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑀𝑀𝑖𝑖/∑𝑀𝑀𝑖𝑖  (4) 
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𝑀𝑀𝑤𝑤𝑖𝑖 = ( 𝑑𝑑𝑖𝑖
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𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5
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5 /∑ ( 𝑑𝑑𝑖𝑖
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𝑑𝑑1⋅𝑑𝑑2⋅𝑑𝑑3⋅𝑑𝑑4⋅𝑑𝑑5
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1
5
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𝑀𝑀𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑖𝑖
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∑ 𝑑𝑑𝑖𝑖
= 𝑑𝑑𝑖𝑖/∑𝑑𝑑𝑖𝑖, 

 
𝛿𝛿 = (∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛

𝑖𝑖=1
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1/2
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𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸𝑝𝑝(Θ̂1, … , Θ̂d, … , Θ̂D) = 𝑞𝑞𝑝𝑝(|𝑢𝑢1

1|, … , |𝑢𝑢𝑑𝑑
𝑖𝑖 |, … , |𝑢𝑢𝐷𝐷

𝑖𝑖 |). (8) 
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0244 
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1.  

,	

i.e., wi = Mwi.

Q.E.D.
Based on the above mathematical formulas, the 

main algorithm (see Fig. 4) is: the difference be-
tween two vectors x and y is the Euclidean distance

	

1 

 𝑔𝑔(𝑥𝑥, 𝑦𝑦)  =  1
2𝜋𝜋𝜎𝜎2 𝑒𝑒−𝑥𝑥2+ 𝑦𝑦2
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𝑛𝑛
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1
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𝑛𝑛
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1.  

	 (5)

where:	n is the size of vectors (number of 
observations).

Five numbers (creating one vector D) esti-
mated by each student and five exact volumes 
(creating vector E) should be normalized and the 
Euclidean distance δ between D and E is com-
puted (see Fig. 5). For each student, we create one 
PC matrix and geometric means of rows normal-
ized to the sum of 1.

The sample size

The volumes of our five assessed objects are 
known, real values; hence, their standard deviation 
and the mean do not need to be estimated but can 
be computed [13, 14, 15]. For this reason, there is 
no need to estimate the minimum sample size to 
achieve the assumed level of accuracy since it can 
also be computed by what follows. The natural 
choice for defining the required minimum sample 
size is to set it as the sample size that produces a 
relative standard error of the mean estimator given 
by (e.g. [16] p. 397 and [17] p. 473):
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Figure 4. Algorithm for data analysis
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where i = 1,2…, n (here n = 33 is the number of 
subjects/students). The issue, from the technical 
point of view, is similar to two classic problems. 
The first one is known in classic econometrics as 
the ex-post assessment of the prediction accuracy 
or, in machine learning, as the prediction accuracy 
assessment via k-fold cross-validation (see [18]). 
The second one involves measuring accuracy in 
the design-based approach in survey sampling via 
Monte Carlo simulation studies (e.g., [19]). The 
main difficulty in the analysis is that the problem 
is not univariate. We aim to compare the accuracy 
of the estimation of five parameters (D = 5 vol-
umes of objects), not just a single parameter.

Firstly, let us propose the following measure 
of accuracy estimation of D parameters, which 
will be called the Average Mean Squared Error. 
It is inspired by the average test MSE obtained 
via k-fold cross-validation for machine learning 
modeling. It is given by (compare [18] p. 181):
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(8)  
 

 are estimation errors. 
The value of the measure computed for 
normalized errors of the direct estima-
tion method is approximately 0.00319. 
For the PC method, it is approximately 
0.00248. This indicates that the PC meth-
od is 22.3% more accurate than the direct 
method.

While measures based on the average of 
squared errors are widely used in statistics, it 
should be noted that squared errors tend to be 
strongly and positively skewed. In such cases, 

simply computing the average as the central ten-
dency measure may not be sufficient or appropri-
ate. Hence, we would like to propose easily inter-
preted measures allowing for estimation accuracy 
comparisons. To assess the accuracy of multivari-
ate estimation, we will adopt measures proposed 
by [20] for a multivariate prediction problem.

Firstly, we propose to use the quantile of mix-
ture of absolute estimation error (QMAEE) of or-
der p given by (compare [17] p. 415):
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, signifying that at least 50% of all normalized 
estimation errors are smaller or equal to 0.0244, 

Figure 5. Euclidean distances between Vector D and Vector E
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 indi-
cating that at least 90% of all normalized estima-
tion errors are smaller or equal to 0.0774.

The direct estimation method yield-
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. These values 
exceed the corresponding values obtained based 
on the PC method by 27.9% and 15.9%, respec-
tively, showing that the direct method is less 
accurate if the accuracy is compared based on 
QMAEE. Secondly, if the variability of estima-
tion errors for different estimated characteristics 

is high (e.g., θd, where d = 1,2,…,D, are of dif-
ferent orders of magnitude), or if we would like 
to obtain results even simpler to understand and 
interpret, we propose to replace the estimation 
errors in Equations 7 and 8 by relative estima-

tion errors given by 

1 

 𝑢𝑢𝑑𝑑
𝑖𝑖 = Θ̂𝑑𝑑

𝑖𝑖 − Θ𝑑𝑑  
 
 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0244 
 
 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.9(Θ̂1, … , Θ̂5) = 0.0774  
 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.5(Θ̂1, … , Θ̂5) = 0.0313  
 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸0.9(Θ̂1, … , Θ̂5) = 0.0898 
 

 𝑟𝑟𝑑𝑑
𝑖𝑖 = Θ̂𝑑𝑑

𝑖𝑖 −Θ𝑑𝑑
Θ𝑑𝑑

 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑝𝑝(Θ̂1, … , Θ̂d, … , Θ̂D) = 
=  𝑞𝑞𝑝𝑝(|𝑟𝑟1

1|, … , |𝑟𝑟𝑑𝑑
𝑖𝑖 |, … , |𝑟𝑟𝐷𝐷

𝑖𝑖 |) 
 
(8)  
 

. The Relative 
Quantile of Mixture of Absolute Estimation Er-
ror (RQMAEE) of order p is given by (compare 
[20] p. 415):

	

1 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑝𝑝(Θ̂1,… , Θ̂d, … , Θ̂D) = 

= 𝑞𝑞𝑝𝑝(|𝑟𝑟11|,… , |𝑟𝑟𝑑𝑑𝑖𝑖 |, … , |𝑟𝑟𝐷𝐷𝑖𝑖 |) 
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	 (8)

Table 4. Comparison of accuracy of estimation methods based on various measures
Measure PC method Direct method Gain in accuracy

av. Euclidean dist. 0.0958 0.1119 14.4%

AvMSE 0.0025 0.0032 23.3%
QMAEE0.5
QMAEE0.9

0.0244
0.0774

0.0313
0.0898

21.8%
13.7%

RQMAEE0.5
RQMAEE0.9

14.68%
48.48%

19.43%
56.33%

24.4%
13.9%

Figure 6. Modulus of errors for PC and direct estimation methods
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The median of the modulus of relative nor-
malized estimation errors was found to be 14.7% 
for the PC method and 19.4% for the direct meth-
od. Additionally, the quantile of order 0.9 of the 
modulus of relative normalized estimation errors, 
which indicates a pessimistic accuracy scenario, 
was found to be 48.5% for the PC method and 
56.3% for the direct method. Thus, it can be con-
cluded that, while the PC method provides a high-
er accuracy level compared to the direct method 
for the same input data, the observed accuracy for 
both methods is not particularly high.

Table 4 shows comparisons of the accuracy 
of estimation methods. A smaller value of the 
accuracy measure indicates better accuracy. The 
observed gains in accuracy depend on the ac-
curacy measures used and range from 13.7% to 
24.4%. Let us consider two examples to illustrate 
the accuracy. A 14.4% gain in accuracy using the 
average Euclidean distance means that the aver-
age Euclidean distance between the estimates and 
known true values calculated for the PC method 
is 14.4% smaller than for the direct method. Sim-
ilarly, a 24.4% gain in accuracy based on RQ-
MAEE0.5 indicates that the median of the modulus 
of relative estimation errors (i.e., RQMAEE0.5) 
calculated for the PC method is 24.4% smaller 
than for the direct method. 

To the best of our knowledge (based on inten-
sive searches of Web of Knowledge, Scopus, and 
Google), the presented results for 3D objects have 
never been obtained for pairwise comparisons be-
fore. As such, they are subject to improvements 
by subsequent research efforts.

CONCLUSIONS 

The presented Monte Carlo study for the pair-
wise comparisons method for 3D semi-random 
objects has confirmed the improvement of accura-
cy. The gain in accuracy is 14.4% for the average 
Euclidean distance and 24.4% for RQMAEE0.5. 
Such a gain should be considered as essential. We 
have also learned that generating semi-random 
3D objects is not a trivial task. Printing most of 
the examined objects has taken hours on a printer 
of (more or less) a standard level of quality.

Our approach can be also applied to improve 
comparison of various metaheuristics as well as 
for a more accurate analysis of expected time ef-
ficiency of dynamic programming. In a follow-up 

study, more randomness will be facilitated by ob-
ject selection from an image table. 
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