See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/386985299

Pairwise comparisons and rankings: mathematical aspects from gauge theory to topology

READS 3

Presentation · December 2024

CITATIONS 0	5	
1 author:		
0	Jean-Pierre Magnot University of Angers 105 PUBLICATIONS 616 CITATIONS	
	SEE PROFILE	

Pairwise comparisons and rankings: mathematical aspects from gauge theory to topology

Jean-Pierre Magnot

12/12/2024

LAREMA - University of Angers - France jp.magnot@gmail.com

Presentation of the talk

Weights as discretized gauges, etc.

- Yang-Mills theory in physics? in loop quantum gravity?
- Analogy with inconsistency reduction
- Ø Mimization problem and gradient method
 - Necessary framework for a gradient method
 - inconsistency indicators and the volatility of rankings
 - A "prehistoric" gradient method; the orthogonal consistencization
- The problem of equal ranking
 - equal ranking, equal weights and consistent pairwise comparisons
 - The characteristic ranking matrix
 - strict ranking as a minimization problem

The gauge problem in physics

A principal bundle P with structure group G over a manifold M is defined by:

- a free action on the right of G on P,
- a smooth surjective map $\pi : P \to M$ such that $\forall x \in M, \pi^{-1}(x)$ is an orbit of G.

A gauge on P is a smooth section $M \to P$. It identifies P with $M \times G$ (if it exists).

Various gauges in physics:

- physically motivated: temperature (gauges: Kelvin, Celcius ...), altitude, Galilean frames
- more discutable gauges: axial gauge, Coulomb gauge for weak/strong interactions

< 🗇 🕨 < 🖃 🕨

Weights as discretized gauges, etc. Minimization problem and gradient method The problem of equal ranking

How to build a gauge by connections

A connection lifts paths on the base M to horizontal paths on *P*. The defect of a loop to be a horizontal loop is called holonomy, and the curvature of a connection is an infinitesimal holonomy. Read on a simplex, connexions on a trivial principal bundle with abelian structure group read as a map a from edges to G, and the holonomy of the loop $i \rightarrow j \rightarrow k \rightarrow i$ is

Figure: Holonomy of a non-flat connection.

The correspondence with pairwise comparisons

discrete Yang-Mills formalism	Pairwise Comparisons (PC)
connection	PC matrix
flat connection	consistent PC matrix
curvature = loop holonomy	inconsistency
classical Yang-Mills functional	quadratic average of inconsistency on triads
"sup" Yang-Mills functional	Koczkodaj's inconsistency indicator

э

< ロ > < 同 > < 三 > < 三 >

Necessary framework for the gradient method

- a convex domain $\Omega \subset \mathbb{R}^n$
- equipped with a Riemannian metric g, that is a smooth map from Ω to symetric definite bilinear forms
- a functional, (ideally a strictly convex functional i.e. $\forall x, y$, $f\left(\frac{x+y}{2}\right) < \frac{f(x)+f(y)}{2}$) differentiable everywhere.

Theorem

The integral curves of the gradient vector field $-\nabla f = -g^{-1}(df)$ are the shortest paths for the metric g that link a point in Ω with a point realizing a (the) minimum of f.

Image: A image: A

The gradient method applied to a class of inconsistency indicators

 $\left[\mathsf{M},\mathsf{Mazurek},\,\mathsf{Cernanova},\,2023\right]$ the sample family of inconsistency indicators are of the type

$$ii_n^p = ||(|a_{i,j}a_{j,i}a_{k,i} - 1|)_{1 \le i < j < k \le n}||_p$$

where

$$||X||_p = \left(\sum |X_l|^p\right)^{1/p}, \quad p \in \mathbb{R}^* \cup \{+\infty\}.$$

Then

- the discretized gradient methods indeed produce approximately consistent PC matrices
- two inconsistency indicators in this family may lead, to the same PC matrix, to non-equivalent rankings.

 $\Rightarrow the inconsistency indicator may be used to modelize the requirements of the decision maker. more largely than in encoding approximate consistency. <math display="block">(a) + (a) + (a)$

A prehistoric gradient method

"In an Euclidean space, the shortest path between two points is a segment".

Moreover,

"In an Euclidean space, there exists an unique orthogonal projection of a point into a convex set"

These two principles are applied by Koczkodaj and al. to project PC_n to CPC_n in additive pairwise comparisons, with respect to any scalar product on PC_n .

<u>**Claim**</u>: The gradient method for ii_n^2 , expressed additively, and the canonical scalar product on $\mathbb{R}^{n(n-1)/2}$ corresponds to this method.

Strict rankings and PC matrices

Last section is based on [M, preprint 2024]. A strict ranking is defined by a family of weights $(w_i)_{i \in \mathbb{N}_n}$ that define an injective map $\mathbb{N}_n \to \mathbb{R}^*_+$, \Leftrightarrow $\exists ! \sigma \in \mathfrak{S}_n$ such that

$$w_{\sigma(1)} < \cdots < w_{\sigma(n)}$$

 \Leftrightarrow

$$i=j \quad \Leftrightarrow \quad a_{i,j}=\frac{w_j}{w_i}=1.$$

Image: A image: A

The \mathcal{R} -condition on PC_n

$$\mathcal{RPC}_n = \left\{ (a_{i,j})_{(i,j) \in \mathbb{N}_n^2} \in \mathcal{PC}_n \, | \, i = j \Leftrightarrow a_{i,j} = 1 \right\}$$

with connected components characterized by the set of indexes

$$I((a_{i,j})_{(i,j) \in \mathbb{N}^2_n}) = \left\{ (i,j) \in \mathbb{N}^2_n \, | \, i < j \text{ and } a_{i,j} > 1 \right\}.$$

<u>locus</u> = one connected component <u>admissible locus</u> = $\exists \sigma \in \mathfrak{S}_n, \forall i < j, a_{\sigma(i),\sigma(j)} < 1.$

Theorem

If $A \in \mathcal{RPC}_n$ is in an admissible locus, the permutation σ is unique and it defines a reordering (a ranking) in \mathbb{N}_n compatible with any family of weights generated by any consistent PC matrix in the same admissible locus.

< ロ > < 同 > < 三 > < 三 >

Existence of non admissible locus

Given $(a_{i,j})_{(i,j)\in\mathbb{N}_n^2} \in PC_n$ we associate its characteristic ranking matrix with coefficients

$$c_{i,j} = \mathrm{sign}(\log(a_{i,j})) = egin{cases} 0 & \mathrm{if} & a_{i,j} = 1 \ 1 & \mathrm{if} & a_{i,j} > 1 \ -1 & \mathrm{if} & 0 < a_{i,j} < 1 \end{cases}$$

Theorem

 $\forall n \geq 3, \mathcal{RPC}_n$ has non admissible loci.

Example

For
$$n = 3$$
, the 2 non-admissible have characteristic ranking
matrices $\begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$

Strict ranking and consistency: a dream?

Theorem

The gradient method for some inconsistency indexes tested in [MMC2023] preserve neither admissible loci nor even loci.

Theorem

Orthogonal consistencization do not preserve the \mathcal{R} -condition.

Remark

The existence of non-admissible loci make impossible the existence of an inconsistency index for which the preserves the loci in \mathcal{RPC}_n .

< A > <

A minimization problem for strict ranking and consistency

$$\mathcal{APC}_n = \mathcal{PC}_n - \overline{\mathcal{R}}\mathcal{CPC}_n$$
. Let $\Phi: \mathcal{APC}_n \to \mathbb{R}$

defined by $\Phi((a_{i,j})_{(i,j)^i n \mathbb{N}^2_n}) =$

$$\left(\prod_{(i,j)\in\mathbb{N}^2_n,i< j}\frac{ii(A)}{(\log(a_{i,j}))^2+(ii(A))^{n^2/2}}\right)\sum_{(i,j)\in\mathbb{N}^2_n,i< j}((\log(a_{i,j}))^4+1).$$

Theorem

It is a functional

- which is \mathbb{R}_+ -valued,
- which vanishes only on consistent PC matrices that satisfy the $\mathcal{R}-\text{condition}$

< A >

Thank you for your attention!

Main references:

- Magnot, J-P.; preprint 2024, still "on hold" in arXiv.
- Ellingsen,
 A.; Magnot, J-P.;
 Lundholm, D.; (2024)
- Magnot, J-P.;
 J. Appl. Anal. (2024)
- Magnot, J-P.; Mazurek, J.; Cernanova, V.; (2023)

Figure: Penrose tribar.